«зеленый» курс: какое будущее ждет альтернативные источники энергии

«Бесконечная» энергия из воздуха

В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.

Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы

(Фото: UMass Amherst / Yao and Lovley labs)

С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.

Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.

Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.

Основы альтернативной энергетики и использования ВИЭ

Возобновляемая энергетика использует для своих нужд энергию:

  • ветра;
  • малых речных потоков;
  • солнца;
  • геотермальных источников;
  • приливов и отливов.

Россия стремится к переходу на использование альтернативных источников энергии. Вот как развивается эта отрасль энергетики в государстве:

  1. Ветер.Под ветроэнергетику отводится примерно 26–30% всего электричества, что генерируется на территории России. Хотя страна не входит в число лидеров по производству возобновляемой энергии, показатель уже неплохой.
      • Большим КПД обладают ветроустановки, расположенные в предгорных и горных районах Кавказа, Алтая, Урала. Развитие ветроэнергетики ведётся на российских побережьях Тихого и Северного Ледовитого океанов. Специалисты рассматривают возможность возведения крупных ветропарков на побережьях Каспийского и Азовского морей, на юге Камчатки и п-ове Кольском. Мощнейшие действующие ветропарки локализуются в Крыму, республике Башкортостан, Калининградской области и на Камчатке.
      • Наряду с большими ветровыми площадками, сооружаются малые, предназначенные для обеспечения энергией близлежащих сёл и деревень.
      • Кроме обычных наземных ветрогенераторов, не так давно стали применять зонды, заполненные гелием. Эти приспособления поднимаются на 1,2–3 км над уровнем земли и генерируют энергию, находясь в воздухе. Преимущество таких зондов состоит в большей производимой мощности (т. к. порывы ветра на высоте значительно сильнее).
  2. Горные речки.Малые водные потоки хранят в себе энергию. Во многих частях России (на Кавказе, например) на горных реках были возведены небольшие ГЭС. Такие установки требуют лишь периодического техосмотра. Обслуживать действующее оборудование круглосуточно не требуется. Зато жители поселений, что расположены в таких местностях, имеют сравнительно дешёвую электрическую энергию. Провести в эти деревушки централизованное энергообеспечение было бы в несколько раз дороже!
  3. Геотермальные источники.Энергия горячих подземных вод развивается динамично. По общим данным, на территории России имеется 56 месторождений термальных вод, 20 из которых используются в промышленных целях. Все термальные ЭС расположены в зоне Камчатки и Курильских островов. На западе Сибири было открыто подземное море площадью около 3 млн. м². Его энергия пока остаётся недостаточно востребованной.
  4. Солнце.Огромные площадки, «усеянные» солнечными батареями, расположены в Крыму, республике Башкортостан, в Алтайском крае. Именно в этих районах гелиоэнергетика даёт самые большие доходы.

Из приведённых в списке данных видно, что ВИЭ на территории России набирают обороты и медленно, но верно развиваются. Однако страна всё ещё отстаёт от мировых лидеров по использованию ВИЭ.

Солнечный свет

Пожалуй, самый известный, нашумевший в СМИ источник альтернативной энергии. Самое громкое его потребление было в 1958 году, тогда американцы впервые пустили в ход солнечные батареи на своих спутниках. Сегодня же мы часто видим их, они стали для нас привычным легко узнаваемым явлением.

Энергия солнечного света

Принцип извлечения прост. Батарея состоит из панели которая имеет две сложенные вместе пластинки из кремния. первую пластину покрывают бором, а вторую фосфором. Слой покрытый фосфором, имеет свободные электроны, в то время когда в слое покрытым бором – электроны отсутствуют. Под воздействием лучей, электроны начинают движение частиц, и между ними возникает электрический ток. Затем с помощью мелких медных проводников, ток накапливают в батареях.

Также существуют термальные электростанции, в которых сконцентрированными лучами нагревали воду до кипения, а затем потребляли. Но у этого метода слишком мал коэффициент полезного действия, вследствие чего он не используется.

Самая большая солнечная электростанция в Мохаве

Позитивной цепью является:

  • легко доступности почти на всех континентах и уголках земного шара
  • дешевизна обслуживания
  • бесшумность
  • простота монтажа
  • легкость в использовании

Негативная сторона:

  • малый коэффициент эффективности, сейчас это не превышает 30-40%
  • высокая стоимость батарей
  • большая площадь для установки

Гидроэнергетика

К возобновляемым источникам энергии относятся широко распространенные гидроэлектростанции. На этих объектах используется потенциальная энергия водных потоков.

Традиционные гидроэлектростанции

Возводят гидроэлектростанции, как правило, на реках. Для создания необходимого давления воды создают мощные плотины и объемные хранилища воды. Как разновидность, используют бесплотинные ГЭС.

Данным объектам (ГЭС) гидроэнергетики присущи следующие особенности.

Положительные:

  1. высокий КПД при сравнительно малых экономических затратах на строительство и дальнейшую эксплуатацию станции, отсюда низкая себестоимость электроэнергии;
  2. отсутствуют вредные выбросы в атмосферу;
  3. водохранилище как фактор, улучшающий микроклимат в районе ГЭС;
  4. возможность разведения рыб;
  5. предотвращает появление паводков, используется для орошения сельхозугодий, технического применения на заводах;
  6. обладают механизмом регулирования потребления энергии.

Отрицательные:

  1. водохранилища затопляют обширные территории, занимают земли, пригодные для сельского хозяйства;
  2. перекрытие рек существенно меняет условия для обитания ценных видов проходных рыб, многие из которых исчезают из облюбованных ранее водоемов.

Гидроэлектростанции, как возобновляемые источники энергии, эффективны для поставки электроэнергии в горные участки. Они имеются в Швейцарии, на территории России. В мировом объеме поставляемой энергии доля гидроресурсов составляет около трех процентов. В Канаде, Исландии и Китае основную часть электроэнергии вырабатывают именно гидростанции.

Красноярская гидроэлектростанция

В России строительство гидроэлектростанций всегда считалось выгодным направлением. В наши дни гидростанции вырабатывают 6 процентов электроэнергии страны. Площади крупнейших водохранилищ ГЭС составляют тысячи квадратных километров. В пример можно привести размеры Самарского водохранилища, площадь которого превышает 6400 км2.

Приливные электростанции

Особой разновидностью гидроэнергетики являются приливные электростанции, работающие на основе использования энергии приливов и отливов. Они возводятся на побережьях, где под воздействием гравитационных сил Солнца и Луны ежедневно меняется уровень воды морских и речных водоемов. Залив или устье реки перегораживают дамбой. Встроенный в неё гидроагрегат с огромными лопастями и преобразует силу прибоя в электроэнергию.

Так устроена приливная гидроэлектростанция

Такая форма получения энергии из неисчерпаемого источника очень экологична, имеет малую себестоимость. Однако само строительство требует больших вложений. Кроме того, перепады в мощности не позволяют поставлять электроэнергию в постоянном режиме. Тем не менее, станции ПЭС ценят за высокую эффективность и малое влияние на экологию. Их строительство продолжается во многих странах.

Волновые электростанции

Энергия волн представляет собой огромный потенциал. Удельную мощность морских и океанских волновых колебаний оценивают гораздо выше солнечной и ветровой. Специалисты подсчитали, что мощность волн мирового океана равна примерно 30 процентам всей потребляемой электроэнергии на Земле.

Волновая гидроэлектростанция Oyster в Шотландской прибрежной зоне мощностью 600 кВт

Работа волновых электростанций построена на превращении потенциальной энергии волн в электрическую. Выбор места строительства подобных объектов получения электричества обусловлен особенностями региона, наличием крупных водоемов и сильных ветров.

Гидроэнергетика будущего

Гидроэнергетика не стоит на месте. Постоянно придумываются новые специфические виды использования силы мирового океана. К примеру, в данный момент разрабатываются технологии использования в энергетике морских течений и разницы температур на различных глубинах.

Океанские и морские течения (Куросио, Гольфстрима и т.п.) также обладают определенной энергетической силой, потенциал которой на практике пока не оценен. Но ученые и проектировщики считают возведение гидростанций, использующих энергию водных течений, перспективном направлением в морской энергетике. Согласно технологии, применяют специальные преобразователи в виде объемных и водяных насосов.

Роторная система Seagen, расположенная у побережья Ирландии, преобразует энергию течений в электроэнергию

Электроэнергию можно получать, используя разницу температур поверхности и глубинных слоев моря или океана. Разность на глубине 400 м и верхнего слоя воды составляет 12 градусов. В данный момент уже существуют экспериментальные системы преобразования разницы температур в электричество, основанные на пьезоэффекте.

Экология под вопросом

Однако, по мнению экспертов, не все ВИЭ одинаково экологически безопасны. Некоторые способны нанести ущерб экологии. В частности, речь идёт о гидроэлектростанциях (ГЭС). Согласно данным исследователей из Австралии и КНР, суммарная площадь земель, затопленных в результате ввода в эксплуатацию гидроэлектростанций, — 340 тыс. кв. км, что немногим меньше площади Германии. Соответствующие сведения учёные приводят в издании Trends in Ecology & Evolution.

Из-за ГЭС были разрушены многие пойменные экосистемы, что привело к снижению видового разнообразия. Впрочем, в последние годы гидроэнергетика уступает лидерство новым видам генерации: солнечной и ветроэнергетике. По прогнозам экспертов, их доля генерации сравняется с долей ГЭС к 2030 году.

Однако активное внедрение биотоплива, произведённого из древесины и сельскохозяйственных культур, способно обернуться неприятными последствиями. Кратное увеличение нагрузки на сельхозугодия может привести к сокращению производства продовольствия. Согласно подсчётам американских исследователей, уже сегодня расширение «топливных» посадок вызвало рост цен на продовольственное сырьё в США. Кроме того, чрезмерное увлечение биотопливом может привести к вырубке лесов. 

Также по теме

Вырубка лесов и CO2: учёные доказали вред биотоплива для окружающей среды

Европейские учёные пришли к выводу, что биотопливо может наносить серьёзный ущерб окружающей среде. В частности, исследователи…

В 2012 году Еврокомиссия пришла к выводу, что перевод земель под топливные плантации должен быть ограничен, а производители топлива из пищевых культур не должны пользоваться господдержкой.

В результате проведённого в прошлом году Евросоюзом исследования учёные выяснили, что пальмовое или соевое масло, из которого извлекают энергию, выделяет в атмосферу больше углекислого газа, чем любое ископаемое топливо.

«Предписанное ЕС дешёвое биотопливо на основе пищевых продуктов, в особенности растительных масел, таких как рапсовое, подсолнечное и пальмовое, — просто ужасная идея», — заявил директор исследовательской организации Transport & Environment Йос Дингс.

Неоднозначными, по мнению экспертов, являются и преимущества электромобилей как с экономической, так и с экологической точек зрения. При этом в ряде стран действуют меры правительственной поддержки этого вида транспорта.

  • Электромобиль Tesla Model 3
  • Reuters

Например, в Эстонии покупатель электрокара может рассчитывать на компенсацию 50% себестоимости машины, в Португалии на покупку электроавтомобиля выплачивается субсидия в 5000 евро. В России тоже задумываются о введении подобных дотаций.

Без господдержки такие автомобили не пользуются спросом: после того как власти Гонконга отменили налоговые льготы для покупателей электрокаров Tesla, продажи этих машин упали до нуля. Однако польза электрокаров для окружающей среды пока не очевидна. 

Типы зеленой энергии.

Основными источниками являются энергия ветра, солнечная энергия и гидроэлектроэнергия (включая энергию приливов и отливов, в которой используется энергия океана, получаемая из морских приливов). Солнечная и ветровая энергия может производиться в небольших масштабах в домах людей или, альтернативно, они могут вырабатываться в более крупных промышленных масштабах.

1. Солнечная энергия.

Этот распространенный возобновляемый источник зеленой энергии обычно производится с использованием фотоэлементов, которые улавливают солнечный свет и превращают его в электричество. Солнечная энергия также используется для обогрева зданий и горячего водоснабжения, а также для приготовления пищи и освещения. Солнечная энергия теперь стала достаточно доступной для использования в домашних целях, включая освещение сада, хотя она также используется в более крупных масштабах для питания целых кварталов.

2. Ветроэнергетика.

Ветровая энергия, особенно подходящая для морских и высокогорных объектов, использует энергию воздушного потока по всему миру, чтобы раскручивать турбины, которые затем вырабатывают электроэнергию.

3. Гидроэнергетика.

Этот вид зеленой энергии, также известный как гидроэлектростанция, использует потоки воды в реках, ручьях, плотинах или других местах для производства энергии. Гидроэнергетика может работать даже в небольших масштабах, используя поток воды по трубам в доме, или может поступать от испарения, дождя или приливов в океанах.

4. Геотермальная энергия.

Этот вид зеленой энергии использует тепловую энергию, которая хранится прямо под земной корой. Хотя для доступа к этому ресурсу требуется бурение, что ставит под сомнение воздействие на окружающую среду. Геотермальная энергия использовалась для купания в горячих источниках в течение тысяч лет, и этот же ресурс можно использовать для пара, который вращает турбины и генерирует электричество.

Хотя в некоторых странах, например в Исландии, геотермальные ресурсы легкодоступны, для простоты использования этот ресурс зависит от местоположения, и для того, чтобы быть полностью «экологичным», необходимо тщательно контролировать процедуры бурения.

5. Биомасса.

Этим возобновляемым ресурсом также необходимо тщательно управлять, чтобы его действительно назвали источником «зеленой энергии». Электростанции, работающие на биомассе, используют древесные отходы, опилки и горючие органические сельскохозяйственные отходы для производства энергии. Хотя при сжигании этих материалов выделяются парниковые газы, эти выбросы все еще намного ниже, чем выбросы от топлива на основе нефти.

6. Биотопливо.

Вместо сжигания биомассы, как упоминалось выше, эти органические материалы можно преобразовать в топливо, такое как этанол и биодизель. В 2010 году на биотопливо было поставлено всего 2,7% мирового топлива для транспорта, а к 2050 году его мощность, по оценкам экспертов, сможет удовлетворить более 25% мирового спроса на топливо для транспорта.

Что такое чистая энергия – читайте в нашей статье.

Затраты на доставку энергии посредством ВИЭ

Себестоимость электричества от солнечных панелей и ветрогенераторов на данный момент больше в 2 раза, чем себестоимость электричества на выходе с ТЭС, и составляет сейчас 10-12 евроцентов за КВтч.

Тогда, если принять, что в половине от 60% времени работы турбины цена ниже и в среднем ниже на 50% то средняя доплата будет составлять 3,9/3/2=0,65 пенсов.

В среднем оптовая цена в Британии составляет 6 пенсов. Тогда такая доплата означает, 10% ссубсидию.

Это субсидирование будет действовать 15 лет.

Хотя уже на этом этапе могут быть нюансы. Если производство оборудования ВИЭ разместить вблизи источников дешёвой электроэнергии (АЭС, ГЭС, дешёвый уголь), то можно добиться снижения себестоимости и сделать цену электроэнергии с ВИЭ конкурентоспособной с электроэнергией от ТЭС.

Но это требует переноса производства, что не может произойти быстро или может не произойти по тем или иным причинам.

Главное же на чём прямо сейчас уже можно экономить — это сетевая составляющая.

Размещая ВИЭ непосредственно около потребителя, можно экономить на затратах сетевой инфраструктуры.

Общее количество потерь в оптимальном варианте ВИЭ может составить 83%, что меньше оптимального варианта для классического варианта (89%).

Становится очевидно что ВИЭ это не альтернативная энергетика, это альтернативный способ доставки электрической энергии до потребителя.

Затраты на физическую доставку, например, солнечной панели (СП) мощность 300 ватт и весом 20 килограмм, пренебрежительно малы. За время службы такая панель выработает более 5000 кВтч.

Чтобы получить такое же количество электричества в розетке надо, с учётом 90% потерь, добыть, перевезти и переработать в электроэнергию 3,5 тонны СПГ.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина

(Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Практика использования ВИЭ в мире

Каковы масштабы практического использования ВИЭ в мире? Имеющиеся данные позволяют утверждать, что в мире наблюдается бум возобновляемой энергетики.

Установленная мощность электрогенерирующих установок на нетрадиционных ВИЭ (без крупных ГЭС) к концу 2008 г. достигла 280 ГВт, а в 2010 г. превысила мощность всех атомных электростанций — 340 ГВт. Суммарная мощность 150 тыс. ВЭУ в составе сетевых ветростанций на конец 2009 г. составила 159 ГВт. За 2009 г. в эксплуатацию было введено 39 ГВт ВЭУ, их установленная мощность по сравнению с концом 2008 г. (120 ГВт) выросла на 32%. Выработка ими электроэнергии в 2009 г. достигла 324 ТВт×ч.

Суммарная мощность действующих в мире фотоэлектрических преобразователей (ФЭП) к концу 2009 г. достигла 21,3 ГВт, причем в 2009 г. в эксплуатацию было введено более 7 ГВт, а прирост продаж ФЭП на мировом рынке за год составил более 50%. Годовая выработка ими электроэнергии в 2009 г. составила 23,9 ТВт×ч.

Суммарная мощность энергоустановок на биомассе в 2009 г. достигла 60 ГВт, а годовая выработка электроэнергии более 300 ТВт×ч.

Мощность геотермальных электростанций превысила 10,7 ГВт, а выработка ими электроэнергии 62 ТВт×ч/год.

Суммарная тепловая мощность установок солнечного теплоснабжения в 2008 г. достигла 145 ГВт (более 180 млн м2 солнечных коллекторов), солнечное горячее водоснабжение имеет более 60 млн домов в мире, ежегодные темпы роста более 15%.

Производство биотоплив (этанол и биодизель) в 2008 г. превысило 79 млрд литров в год (около 5% от ежегодного мирового потребления бензина, биоэтанол — 67, биодизель — 12 млрд литров в год. По сравнению с 2004 г. производство биодизеля возросло в 6 раз, а биоэтанола удвоилось).

В 30 странах мира действует более 2 млн тепловых насосов, суммарной тепловой мощностью более 30 ГВт, утилизирующих природное и сбросное тепло и обеспечивающих тепло- и холодоснабжение зданий.

В настоящее время около 100 стран имеют специальные государственные программы освоения ВИЭ и на государственном уровне утвержденные индикативные показатели их развития на среднесрочную и долгосрочную перспективу. Большинство стран ставят своей целью добиться вклада ВИЭ в энергобаланс страны на уровне не менее 15-20% к 2020 г., а страны Европейского Союза — до 40% к 2040 г. Приоритетное развитие ВИЭ с темпами роста в десятки процентов в год осуществляется при мощной государственной законодательной, финансовой и политической поддержке.

Солнечная энергетика

Существует два разных вида солнечных электростанций. Первый представляет собой набор солнечных панелей. Свет, падая на них, создает электричество за счет фотоэффекта. Такие панели можно могут быть очень компактными и располагаться на крышах домов. Однако для их изготовления необходимы такие редкие элементы, как теллур и индий, что означает высокую себестоимость вырабатываемой электроэнергии.

Второй тип СЭС основан на использовании множества зеркал, фокусирующих падающий на них свет в одной точке, в которой располагается резервуар с водой или иной рабочей жидкостью. Такие станции более громоздкие, но и вырабатывают они более дешевую энергию.

Эффективность солнечной энергетики сильно зависит от климата местности. Выгодней всего получать электричество в пустыне Сахара. Существует проект Desertec, предполагающий строительство там гигантской электростанции мощностью 100 ГВт, которая будет обеспечивать энергетические потребности европейских стран.

Приливы и отливы воды

Это очень мощный, неисчерпаемый источник. В своё время ещё Жюль Верн интересовался применением этого природного явления, а изобретательные англичане строили мельницы на берегах движущихся вод, в далеком 11 веке нашей эры. Переработка с помощью силы притяжения Солнца и спутника земли Луны непростая задача и имеет много трудностей. Несмотря на постоянность силы притяжения космических тел, выбор места для постройки приливной электростанции – сложный. В нём учитывается и кратность приливов/отливов за сутки, высота подъёма (колеблется от 30см. до 15м.), почва, на которой будет сооружена постройка.

Ещё одной интересной особенностью есть несовпадения лунных суток с солнечными. Лунные сутки на 50 минут меньше, а люди живут по ним 24 часа. В результате получаются несовпадения по времени с самым максимальным и минимальным вырабатыванием и её потребление, во время самой активной деятельности человека.

Сама приливная электростанция устроена довольно просто. Наперекор устьям большой реки впадающей в море/океан, возводится дамба. Сооружение полностью перекрывает движение в обе стороны. В отверстиях дамбы устанавливают огромные лопасти, которые под током пропускают её и крутятся, а генераторы выдают электричество.

Несмотря на большие сложности с установкой системы, она довольно успешно используется по всему миру. В связи с высокой эффективностью и малым влиянием на экологию, человечество продолжает наращивать их количество по всему земному шару.

Ветер

Ветер – старый, проверенный и надёжный источник возобновляемой энергии. Люди его использовали задолго до введения термина в парусных кораблях и ветряных мельницах.

Сейчас, в силу развития технологий, ветрогенераторы стали достаточно сильной фигурой на рынке и занимают крепкую позицию в своей нише. Конкурентность между производителями заставила их хорошо вложиться в исследования наиболее оптимального ветрогенератора.

Ветроэнергетика

Для оптимальной работы ветряка учитываются такие факторы:

  1. высота над уровнем моря или земли. Как известно зона до двух километров турбулентна, воздушные потоки, располагаемые выше сильно тормозят нижние. Но эффект заметно снижается уже на высоте 100 метров. Плюс, расположения ветряка выше 100 метров позволит увеличить длину лопасти и освободить пространство под устройством для деятельности людей и других коммуникаций
  2. расположение. Оптимальный вариант – побережье или море. Интересный факт! Сейчас появилась офшорная ветроэнергетика. Некие группы людей строят в морях и океанах ветряные электростанции, а на побережья проводят провода подачи тока, тем самым укрываясь от налогов
  3. скорость ветра. Характеристика высчитывается по среднему показателю по региону. Ветряк начинает работать при скорости ветра 3 м/с, а при скорости свыше 25 м/с идет аварийное его отключение, дабы не повредить устройство. Оптимальная скорость  – 15 м/с
  4. количество лопастей. В процессе исследований было определено, что три лопасти – самый эффективный вариант.
  5. Ось вращения

Watch this video on YouTube

Солнечная энергетика

Среди основных проблем солнечной энергетики можно выделить непостоянность и непредсказуемость основного источника энергии, зависимость от погодных и климатических условий, и обусловленная этим необходимость в накопителях энергии или дополнительных источниках энергии. Существенными недостатками являются высокая стоимость фотоэлектрических систем (ФЭС) с учетом необходимости в накопителях и обратных преобразователях переменного тока (до 50% от общей стоимости системы), сравнительно низкий КПД (от 4-5% до 20% для традиционных фотоэлектрических модулей (ФЭМ), и до 40% для концентрирующих ФЭМ) и низкая энергоемкость (~8-12 м2/кВт), вследствие чего под ФЭС требуются большие территории (Таблица 1).

Почему нет востребованности у старых путей получения энергии?

Электричество

Существует тесная взаимосвязь между отраслями промышленности и энергетики. Для обеспечения функционирования предприятий крупного и малого бизнеса и организации транспортных грузоперевозок сегодня не обойтись без мощнейших источников электроэнергии. Это же касается и бытового обеспечения.

Электросети используются для питания:

  • Освещения магистралей и автодорог;
  • Теле- и радиостанций;
  • Жилых, рабочих, торговых кварталов;
  • Стационарных и частных заведений;
  • Обслуживающих предприятий.

Следовательно, электроэнергия сопровождает нас во всех сферах деятельности. Как же обеспечивается ее получение? Для обеспечения энергией городских сетей эффективно пользуются тепловыми (ТЭС), водяными (ГЭС) и ядерными электростанциями. Они составляют традиционную топливную энергетику.

Подобные станции работают на следующих видах природного топлива: угле, торфе, газе, нефти, радиоактивных рудах (уране, плутонии). Устройство энергопреобразующих станций является примитивным, но высокий показатель КПД подтверждает их эффективность.

Для работы российских ТЭС используется горючее топливо. Происходит высвобождение мощной химической энергии в результате горения и преобразование в электрическую, с достижением максимального показателя КПД — 35 процентов.

Аналогично происходит работа атомных электростанций. Для того, чтобы обеспечить их работоспособность, в России пользуются урановыми рудами или плутонием. Когда распадаются ядра данных радиоактивных источников, происходит выделение энергии, преобразующейся в электрическую, с достижением наивысшего показателя КПД – 44 процента.

Для получения энергии и обеспечения работы гидроэлектростанций пользуются мощными водными потоками. Происходит поступление огромных масс воды на поверхность гидротурбин, что обуславливает их движение и генерирование электроэнергии, с максимальным показателем КПД – 92 процента.

Отметим также использование ГТЭС – газотурбинных станций – относительно новых установок, способных осуществлять генерирование одновременно и электрической, и тепловой энергии, с максимальным показателем КПД – 46 процентов.

Но возможности традиционной энергетики, основанной на работе с нефтепродуктами и радиоактивными элементами, не соответствуют современным взглядам специалистов.

Среди новых перспективных разработок выделяются:

Летающие ветряные турбины:

Makani Airborne Wind Turbine — на 90% легче традиционных турбин, запускается с использованием электрического двигателя, способна генерировать электричество на низких скоростях ветра;

Altaeros Airborne Wind Turbine — использует наполненную гелием оболочку для подъема на большие высоты;

Magenn Air Rotor System (M.A.R.S.) — MARS улавливает энергию ветра на высоте от 200 до 300 метров, а также струйные потоки воздуха, возникающие практически на любой высоте;

Генерация на ветрах низких скоростей

Wind Harvester — новая модель ветрогенератора основывается на возвратно-поступательном движении с использованием горизонтальных аэродинамических поверхностей;

Ветряная линза

Ветряная линза (Япония, университет Кюсю) — направленное внутрь изогнутое кольцо, располагающееся по периметру окружности, описываемой лопастями турбины при вращении. Увеличивает мощность ветряной турбины втрое при одновременном уменьшении уровня шума, имеет наибольший потенциал использования в открытом море;

Ветряные турбины с вертикальной осью

Windspire — вертикальная турбина высотой около 10 метров и шириной

около полутора метров, применима к использованию в городских

условиях (Рисунок 4).

Наиболее перспективными технологиями в ветроэнергетике станут те, что

позволят снизить зависимость их эффективности от размеров турбин,

как, например, Wind Harvester или Windspire.


Makani Airborne Wind Turbine


Altaeros Airborne Wind Turbine

ВИЭ подразделяется на группы – традиционные и нетрадиционные источники

В первую группу входит:

  • гидравлическая энергия воды, которая преобразуется в электрическую энергию. Каждая энергетическая станция вырабатывает ее посредством действия гидросилового оборудования, устанавливаемого на ней;
  • энергия биомассы, получаемая в ходе сжигания древесного угля, дров, торфа. Она применяется в основном для выработки тепла, подаваемого в отопительную систему жилых и нежилых зданий;
  • геотермальная энергия, являющаяся результатом естественного гниения и поглощения минералами, находящимися в недрах земли, солнечной энергии. В сущности, солнце есть неисчерпаемый источник энергии. Его тепловое излучение преобразовывается в электрическую энергию с применением фотоэлементов, тепловых машин.

Вторая группа состоит из энергии, которая существует в природе, окружающей человека:

  • солнечной;
  • ветровой;
  • морских волн и течений;
  • приливов и отливов океана;
  • биотоплива;
  • низкопотенциальной тепловой.

Принцип использования возобновимой энергии заключается в ее извлечении из постоянно происходящих в окружающей среде геологических процессов. Она предоставляется потребителю, который использует ее для решения технических задач и удовлетворения своих нужд.